The BONSAI (Brain and Optic Nerve Study with Artificial Intelligence) deep learning system can accurately identify pediatric papilledema on standard ocular fundus photographs.

  • Mung Yan Lin
  • Raymond P Najjar
  • Zhiqun Tang
  • Daniela Cioplean
  • Mihaela Dragomir
  • Audrey Chia
  • Ajay Patil
  • Caroline Vasseneix
  • Jason H Peragallo
  • Nancy J Newman
  • Valérie Biousse
  • Dan Milea
  • Clare L Fraser
  • Jonathan A Micieli
  • Fiona Costello
  • Hui Étienne Bénard-Séguin
  • Carmen Kar Yang
  • Carol Y Mun Chan
  • Noel Cy Cheung
  • Steffen Chan
  • Philippe Hamann
  • Anaïs Gohier
  • Marie-Bénédicte Vautier
  • Christophe Rougier
  • Catherine Chiquet
  • Rabih Vignal-Clermont
  • Raoul Kanav Hage
  • Thi Ha Khanna
  • Wolf Alexander Chau Tran
  • Jost B Lagrèze
  • Selvakumar Jonas
  • Masoud Aghsaei Ambika
  • Chiara Fard
  • Michele La Morgia
  • Piero Carbonelli
  • Valerio Barboni
  • Martina Carelli
  • Giulia Romagnoli
  • Makoto Amore
  • Takano Nakamura
  • Axel Fumio
  • Maillette Petzold
  • Richard de Buy Wenniger L J
  • Pedro L Kho
  • Mukharram M Fonseca
  • Dan Bikbov
  • Raymond P Milea
  • Daniel Najjar
  • Zhiqun Ting
  • Jing Liang Tang
  • Sharon Loo
  • Shweta Tow
  • Caroline Singhal
  • Tien Yin Vasseneix
  • Ecosse Wong
  • Ching Yu Lamoureux
  • Tin Chen
  • Leopold Aung
  • Nicolae Schmetterer
  • Gabriele Sanda
  • Jeong-Min Thuman
  • Kavin Hwang
  • Yanin Vanikieti
  • Tanyatuth Suwan
  • Patrick Padungkiatsagul
  • Neringa Yu-Wai-Man
  • Eun Hee Jurkute
  • Valerie Hong
  • Nancy J Biousse
  • Jason H Newman
  • Michael Peragallo
  • Sachin Datillo
  • Mung Yan Kedar
  • Ajay Lin
  • Andre Patil
  • Matthew Aung
  • Wael Abdulraman Boyko
  • Amani Alsakran
  • Walid Zayani
  • Ana Bouthour
  • Rasha Banc
  • Fernando Mosley
  • Neil R Labella
  • John J Miller
  • Luis J Chen
  • Janvier Ngoy Mejico
  • Kilangalanga

Source: J AAPOS

Publié le

Résumé

BACKGROUND: Pediatric papilledema often reflects an underlying severe neurologic disorder and may be difficult to appreciate, especially in young children. Ocular fundus photographs are easy to obtain even in young children and in nonophthalmology settings. The aim of our study was to ascertain whether an improved deep-learning system (DLS), previously validated in adults, can accurately identify papilledema and other optic disk abnormalities in children.

METHODS: The DLS was tested on mydriatic fundus photographs obtained in a multiethnic pediatric population (<17 years) from three centers (Atlanta-USA; Bucharest-Romania; Singapore). The DLS's multiclass classification accuracy (ie, normal optic disk, papilledema, disks with other abnormality) was calculated, and the DLS's performance to specifically detect papilledema and normal disks was evaluated in a one-vs-rest strategy using the AUC, sensitivity and specificity, with reference to expert neuro-ophthalmologists.

RESULTS: External testing was performed on 898 fundus photographs: 447 patients; mean age, 10.33 (231 patients ≤10 years of age; 216, 11-16 years); 558 normal disks, 254 papilledema, 86 other disk abnormalities. Overall multiclass accuracy of the DLS was 89.6% (range, 87.8%-91.6%). The DLS successfully distinguished "normal" from "abnormal" optic disks (AUC 0.99 [0.98-0.99]; sensitivity, 87.3% [84.9%-89.8%]; specificity, 98.5% [97.6%-99.6%]), and "papilledema" from "normal and other" (AUC 0.99 [0.98-1.0]; sensitivity, 98.0% [96.8%-99.4%]; specificity, 94.1% (92.4%-95.9%)].

CONCLUSIONS: Our DLS reliably distinguished papilledema from normal optic disks and other disk abnormalities in children, suggesting it could be utilized as a diagnostic aid for the assessment of optic nerve head appearance in the pediatric age group.